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ABSTRACT 

Optical coherence tomography (OCT) has been widely applied in the examination and diagnosis of corneal diseases, but 
the information directly achieved from the OCT images by manual inspection is limited. We propose an automatic 
processing method to assist ophthalmologists in locating the boundaries in corneal OCT images and analyzing the 
recovery of corneal wounds after treatment from longitudinal OCT images. It includes the following steps: pre-
processing, epithelium and endothelium boundary segmentation and correction, wound detection, corneal boundary 
fitting and wound analysis. The method was tested on a data set with longitudinal corneal OCT images from 20 subjects. 
Each subject has five images acquired after corneal operation over a period of time. The segmentation and classification 
accuracy of the proposed algorithm is high and can be used for analyzing wound recovery after corneal surgery. 

Keywords: corneal imaging, boundary segmentation, wound detection, wound analysis, optical coherence tomography 
(OCT) 

 

1. INTRODUCTION 

Optical coherence tomography (OCT) is a noninvasive, non-contact imaging technique [1]. Due to the high resolution 
and adjustable prop depth, OCT has been used clinically for assessment of both anterior and posterior eye diseases [2]. 
An anterior segment OCT can clearly show the profile and structure of cornea, which allows measurement of its 
thickness. Especially, the OCT examination is indispensable for wounded cornea, by which the recovery process can be 
assessed. To relieve the ophthalmologists of the burden of manual inspection of repeated scans, we propose a method to 
automatically segment the corneal boundaries, and to analyze the wound recovery from longitudinal OCT images. 

The cornea is a transparent film which makes the outmost layer of the eyeball. It is vulnerable to injuries which cause 
corneal penetration or contusion. Diagnosis of corneal symptoms is possible by measuring and evaluation of corneal 
thickness. Thus, segmenting the corneal boundary is crucial. Obviously, manual segmentation is time consuming and 
subjective, so automatic and accurate segmentation of corneal boundary is necessary.  

So far, various methods have been reported to segment cornea and have obtained satisfactory results. Rabbani et al. [3] 
utilized the Gaussian mixed model (GMM) to segment the corneal boundaries, which includes two components modeling 
the background and the corneal region respectively. Larocca et al. [4] applied graph theory and dynamic programming to 
searching the shortest path in corneal OCT images of assigned region to find the corneal boundary. This method can also 
deal with corneal images with specific artifacts. Eichel et al. [5] proposed an approach using enhanced intelligent scissors, 
a user interactive segmentation method, to obtain the epithelium and endothelium boundary. Eichel et al. [6] used the 
Prewitt edge detector to extract strong boundary points. Combined with some manual segmentation results, the best-fit 
curve is found as the corneal boundary. However, most of these methods focus on normal cornea, and they don't perform 
well when corneal wounds exist.  
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Fig.1 shows the corneal OCT images with wounds after corneal operation. In this paper, we propose a method that 
automatically segments wounded corneal boundaries, detects and quantitatively analyzes the wounds, and can thus 
facilitate both diagnosis and prognosis evaluation. In our work, boundary segmentation and wound region detection are 
effectively integrated, where the position of boundaries serve as features for wound region classification. 

 

       (a)                                                                                                         (b) 

Figure 1. An anterior segment OCT image for cornea with wound after operation (obtained by ZEISS Visante OCT). (a) A 
corneal image with dislocation wound in the red circle. (b) A corneal image with dehiscence wound in the red circle and 
with central vertical artifact (discussed in Section 2.2). 

2. METHODS 

The proposed method includes five procedures: pre-processing, epithelium and endothelium boundary segmentation and 
correction, wound region detection using random forest, corneal boundary fitting and wound analysis. The details are 
given as follows. 

2.1. Pre-processing 

The corneal images acquired from the anterior segment OCT often contain other tissues such as iris and chamber angles. 
The images are first cropped to the same size, with these regions removed. Then, after multiplication by a coefficient 1.5 
to enhance the image contrast, the Otsu thresholding is used to get a binary image. Next, several morphological 
operations including dilation, closing and hole filling are applied consecutively to enhance the boundaries in advance. As 
shown in Fig.2.    

 
(a)                                                                   (b)                                                                   (c) 

Figure 2. Preprocessing results. (a) The original image. (b) The thresholded binary image. (c) The image after morphological 
operation. 

2.2. Epithelium and endothelium boundary segmentation and correction 

The epithelium and endothelium are the upper and lower boundaries of cornea. In this step, the Canny edge detector [7] 
is applied on the binary image to obtain the two boundaries. The detector computes and normalizes the gradient 
magnitude of each pixel on the Gaussian smoothed image, then uses non-maximum suppression to thin the edges, and 
finally performs edge tracking with hysteresis thresholding. In this experiment, the standard deviation of Gaussian 
smoothing is set as 5.6, and the high and low thresholds are set as 0.96 and 0.384. The initial edge map is achieved as 
shown in Fig.3(a). In the edge map, the first edge point in each column is assigned as epithelium boundary point and the 
second edge point is assigned as endothelium boundary point.  
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Central vertical artifacts such as shown in Fig.1(b) will cause wrong edge detection results as shown in Fig.3(a). 
Therefore, a correction step is added after edge detection. Because there are only two correct boundaries in the binary 
edge map, the columns with more than two edge points are found as the columns corresponding to the artifacts. The 
boundaries in these columns are corrected by interpolation. The final boundary result is shown in Fig.3(b). 

 
(a)                                                                                            (b) 

Figure 3. Detection and correction of the corneal boundaries. (a) The initial result of corneal boundary detection. (b) The 
boundary segmentation result after central vertical artifact correction, the red and blue curve represents the Epithelium and 
Endothelium boundary, respectively. 

2.3. Wound region classification using random forest  

To analyze the corneal wounds, random forest classifier [8, 9] is applied to identify the wound region. Random forest 
classifier establishes a forest which is composed of a large number of independent decision trees, constructed in a 
random way. Finally the results of the classifier are produced by voting among the trees. In this experiment, we set the 
number of trees as 100. In the process of the classification, each column between the segmented boundaries serves as the 
training or testing sample. For training, the wound regions are manually labeled, supervised by an ophthalmologist. For 
convenience, we use the phrase corneal column to replace the meaning of each sample.  

2.4. Feature extraction 

A total of 19 features are extracted from each corneal column to construct the feature vector for classification, namely 
the distance between boundaries, standard deviation of intensity, the distance of detected boundaries and fitting curves, 
four texture features generated by gray level co-occurrence matrix, and another eleven texture features generated by gray 
level run-length matrix.   

Feature1, 2: The distance between the upper and lower boundary is a feature to capture the uneven corneal thickness. In 
addition, the wound scar has higher intensity than other corneal part, so the standard deviation of intensity is an 
outstanding feature. 

Feature3, 4: We find the corneal boundaries are similar to two smooth curves except for the wound region. Based on the 
assumption, the detected upper and lower boundary points are fitted by two independent second-order polynomials. 
Feature3 is the distance between the detected upper boundary and its fitting curve. Feature4 is that for the lower 
boundary. For each corneal column, the greater the distance is, the more likely it belongs to corneal wound region. 

Feature5, 6, 7, 8: Gray level co-occurrence matrix (GLCM) is a statistical method of examining texture that considers the 
spatial relationship of pixels [10, 11]. GLCM records the distribution of co-occurring pixels with a given displacement. 
In this method, the matrix denoted by p(i, j) gives the total number of times that a pixel with gray-level i occurs vertically 
adjacent to a pixel with gray-level j. Computed from the matrix, four texture features are often used: contrast (CON), 
correlation (COR), angular second moment (ASM) and Homogeneity (HOM).  

The calculation of CON is shown in (1): 

 ),(
2

,

jipjiCON
ji
  , (1) 

where i, j are the gray intensity values of the original image. CON is a measure of local variations present in the image.  

The calculation of COR is shown in (2): 
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The calculation of ASM is shown in (3): 
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ASM sums the squared elements in GLCM, so it is related to the homogeneity of the image.  

The calculation of HOM is shown in (4): 
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HOM measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal. 

Feature9-19: Gray level run-length matrix (GLRLM) is also used to extract image texture feature [12-14]. For a given 
image, a GLRLM q(x, y) is defined as the number of runs with pixels of gray-level x and run length y. In the rough 
texture area, long run length has high frequency. While in the fine texture area, short run length appears more frequently. 
Various texture features can then be derived from this matrix. In this paper, 11 features as shown in Tab.1 are obtained 
from the GLRLM. 

Table 1. 11 Features from the Gray Level Run Length Matrix. 
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In the above table, M is the number of gray-level and N is the maximum run length. nr is the total number of runs and np 

is the number of pixels in the image. q(x, y) is the element of GLRLM. 
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2.5. Wound region detection  

After the random forest classifier has been trained offline, it can be used to detect the corneal wound region. Then the 
continuity correction is further applied to improve the accuracy. As shown in Fig.4(a), white region marks the initially 
detected wound columns. Those isolated regions are removed first, then the gaps are filled and finally the white regions 
are connected as one continuous corneal wound region. The final result is shown in Fig.4(b). 

 
(a)                                                                                                (b) 

Figure 4. Wound classification and continuity correction. (a) The original classification result with random forest classifier. 
The white regions at the bottom indicate the detected wound region. (b) The final result of wound region classification. 

2.6. Corneal boundary fitting and wound analysis 

When the corneal wound position has been determined, we can assess the progress of corneal recovery after surgery. 
Curve fitting is performed again for the two boundaries. But different from that in Section 2.3.1, the boundary points in 
the detected wound regions are excluded so that the fitting curves can approximate the shape of the healed cornea. As 
shown in Fig.5, the red and blue curves are the segmented boundary of wounded cornea, the cyan curves are the 
predicted healed corneal boundaries. We calculate the mean thickness difference (MTD) between them using (5) to 
quantitatively analyze the corneal recovery. Obviously, MTD is bigger for the wound region. 

 )()(
fitseg

loweruppermeanloweruppermeanMTD   (5) 

 

Figure 5. Curve fitting for wound recovery analysis. 

3. RESULTS 

In the experiment, the proposed method was tested on 20 subjects received corneal surgery. Each subject has five 
recovery periods. The image acquisition time points are about 0 day, 7 days, 15days, 75 days and 120 days. The OCT 
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image size is 318×617 pixels, with lateral resolution 0.012 mm/pixel. All the cornea data used in this experiment has 
only one wound region. 

The mean and standard deviation of unsigned border positioning errors for epithelium and endothelium boundary are 
shown in Tab.2. The boundaries are segmented manually by trained observers and used as reference.  

Comparing the automatic segmentation algorithm with two observers and inter-observer variability, the errors of the 
automatic segmentation are comparable to the inter-observer difference. The error of the endothelium segmentation is 
significantly bigger than epithelium due to the low edge contrast in the wound region in some images.  

Table 2. Summary of mean unsigned border positioning errors for all data (in pixel). 

Boundary Algo. vs Obs1. Algo. vs Obs2. Obs1. vs Obs2. 

Epithelium 78.075.0  78.086.0  85.083.0   

Endothelium 76.113.1  78.120.1  15.196.0   

 

For validation of the feasibility and effectiveness of random forest classifier, we chose the leave-one-out cross-validation 
method. The true positive rate (TPR), true negative rate (TNR) and the accuracy (ACC) are utilized to evaluate the 
classifier, computing using (6)-(8), respectively. 
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The experimental results show that the method’s average TPR is 73.9%, the average TNR is 97.4% and the average ACC 
is 91.7%.  

Fig.6 shows the quantitative analysis of corneal wound recovery of a patient. The five cropped image slices in the upper 
row show the segmentation and fitting results in the wound region. The lower chart depicts the change of mean thickness 
difference over time. The thickness difference increases at the second time point, which is mainly due to the 
postoperative corneal edema caused by inflammation. In general, the decreasing trend indicates that the corneal wound is 
healing gradually. At the last time point, when the image shows the wound is almost completely healed, the value 
reaches almost zero. Therefore, it suggests that the method of curve fitting for analyzing the recovery of corneal wound 
is feasible and reasonable. 

 

 

 

 

 

Proc. of SPIE Vol. 10137  1013708-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/20/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 

 

 

 

 

0 20 40 60 80 100 120
2

4

6

8

10

12

14

16

18

20

22

days

M
ea

n 
T

hi
ck

ne
ss

 D
iff

er
en

ce
 (

pi
xe

l)

 Corneal wound analysis in five period

 

 

The corneal recovery line

 
Figure 6. An example of corneal wound analysis. Square point is the mean thickness difference calculated from the 
segmented boundaries and fitting curves. 

4. CONCLUSION AND DISCUSSION 

In this paper, we propose an automatic method for segmentation and wound analysis for longitudinal corneal OCT 
images. Firstly, the corneal boundaries are acquired using morphological operations, Canny edge detection and 
correction. Then the random forest classifier is applied for identifying the wound region. Finally, the algorithm also 
generates the fitting curves for quantitative analysis of corneal wound. In summary, as a replacement of manual 
segmentation, the proposed algorithm is promising in assisting diagnosis and prognosis evaluation of patients who 
undergo corneal surgery. However, poor image quality can affect the performance of the proposed algorithm. With 
further optimization to enhance robustness, the algorithm will be made more suitable for clinical practice. 
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